

2023

2023 Power Apps Coding
Standards For Canvas Apps

MATTHEW DEVANEY
LAST UPDATED: 2023-09-09

https://www.matthewdevaney.com
https://twitter.com/mattbdevaney
https://www.linkedin.com/in/matthew-devaney-6499271b7/

 Table Of Contents 2

Table Of Contents

Introduction .. 5

Naming Conventions ... 6

Screen Names .. 6

Control Names ... 6

Variable Names .. 7

Collection Names ... 8

Datasource Table Names ... 8

Variable Type Standards .. 9

Variable Scope .. 9

Why Use Both Local Variables And Global Variables ... 9

Usage Examples ... 10

Commenting Code ... 11

Why Write Code Comments? ... 11

Tips For Writing Good Comments .. 11

Line Comments vs. Block Comments ... 12

Commenting Style .. 12

App Settings .. 13

General Tab .. 13

Display Tab ... 14

Upcoming Features Tab ... 14

Support Tab .. 15

Reviewing Canvas Apps ... 16

App Checker ... 16

Power Apps Code Review Tool .. 17

Source Code Review ... 18

Functional Testing .. 19

User Acceptance Testing .. 19

App Theming Guidelines .. 20

Creating An App Theme ... 20

 Table Of Contents 3

Theming Variables Sample Code .. 21

Branding Templates ... 23

Form Design Guidelines ... 24

Restrict Text Input Values .. 24

Validate Form Data .. 24

Implement Error Handling ... 25

Protect Against Loss of Unsaved Data ... 26

Use A Single Form To Both Edit & Display Records.. 27

Gallery Design Guidelines .. 28

Design Empty States ... 28

Reset The Gallery Scroll Position .. 28

Refresh To Show Current Data ... 29

Define The Sort Order .. 31

Do Not Show Live Updates For Search Results .. 31

Avoid Nested Galleries ... 32

Use Flexible Height Galleries .. 33

Error-Handling ... 34

Enable Formula-Level Error Management ... 34

Patch Function Error-Handling ... 35

Power Apps Forms Error-Handling... 36

Power Automate Flow Error-Handling ... 37

If Error Function ... 37

Handling Unexpected Errors .. 38

Optimizing App Performance ... 39

Load Multiple Datasets Concurrently .. 39

Write Formulas That Use Delegation ... 40

Cache Data In Collections And Variables ... 41

Limit The Size Of Collections .. 41

“Batch Patch” Multiple Changes To A Datasource Table At Once ... 42

Reduce Code In The OnStart Property ... 43

Minimize Number Of Controls On A Single Screen .. 43

Enable DelayOutput For Text Input Controls ... 44

Do Not Reference Controls On Other Screens ... 44

Eliminate The N+1 Problem ... 45

 Table Of Contents 4

Improving Code Readability ... 47

Apply Automatic Formatting .. 47

Use The WITH Function To Improve Readability ... 47

Choose Consistent Logical Operators .. 48

Join Text Strings & Variables .. 49

Remove IF Statements When The Result Is A True Or False Value .. 49

Substitute The Self Operator For The Current Control Name ... 50

Flatten Nested IFs .. 50

Alphabetical Order In Patch & UpdateContext Functions ... 51

Simplify Logical Comparisons When Evaluating A Boolean ... 52

 Introduction 5

Introduction

Welcome to the Power Apps Coding Standards For Canvas Apps.

In this guide you will find 50+ pages of coding rules, guidelines and best practices I use everyday to create Power Apps

Canvas apps. I have spent the last 3 years building Power Apps every day. Now I want to share the knowledge I've gained

in this set of easy-to-understand, actionable examples.

Power Apps already has an official set of canvas coding standards released back in 2018. So why did I make my own? A

few reasons:

• I wanted an updated set of standards and guidelines for 2023 that includes all of the latest features

• These coding standards can be continuously improved as new Power Apps features hit “general availability” in

2024, 2025, 2026 and beyond

• Readers can leave a comments on my website describing their own best practices which I can incorporate into

future versions

I hope you enjoy my Power Apps Coding Standards For Canvas Apps.

Support The Site

I don’t have ads on my website because I
believe in delivering the best learning
experience possible. This website is paid
for out of my own pocket. If you’ve found
value in the free resources I’ve created, I’d
love to have your support.

Click on the “Buy Me A Cat Treat” button
below to support the site.

https://powerapps.microsoft.com/en-us/blog/powerapps-canvas-app-coding-standards-and-guidelines/
https://www.matthewdevaney.com/power-apps-coding-standards-for-canvas-apps/
https://buymeacoffee.com/mattbdevaney

 Naming Conventions 6

Naming Conventions

Screen Names

A screen name should clearly describe its purpose in 2-3 words ending with word “Screen.” Use proper-case. A screen-

reader will speak the screen name to visually-impaired users when the screen loads.

Good Examples Bad Examples Bad Reason

Appointments Screen Appointments Missing the word ‘Screen’

Order Form Screen OrderFormScreen Not friendly to a screen reader

Collect Signature Screen scrCollectSignature Not friendly to a screen reader

Control Names

A control name should show the control-type, the purpose and the screen. Use camel-case and underscores for spacing.

For example, the control named txt_OrderForm_FirstName is a text input that captures first name on the app’s Order

Form Screen.

Good Examples Bad Examples Bad Reason

 drp_NewEmployee_Department drpDepartmentNewEmployee No spacing

 btn_OrderForm_Submit btn_Submit_OrderForm Wrong order

 gal_Home_Appointments gly_Home Appointments Non-standard control prefix

 Naming Conventions 7

A list of standard control prefixes can be found below.

Control Prefix Control Prefix Control Prefix

 3D Object 3do Date Picker dte Microsoft Stream str

 Add Picture pic Drop Down drp PDF Viewer pdf

 Address Input add Export exp Pen Input pen

 Audio aud Form frm Power BI Tile pbi

 Barcode Scanner bar Gallery gal Radio rad

 Button btn Group grp Rating rtg

 Camera Control cam HTML Text htm Rich Text Editor rte
 Canvas cvs Icon ico Shapes shp

 Card dtc Image img Slider sld

 Charts chr Import imp Table tbl

 Check Box chk Label lbl Text Input txt

 Collection col List Box lst Timer tmr

 Container con Map map Toggle tgl

 Combo Box cmb Measuring Camera mcm Video vid

 Component cmp Microphone mic

Variable Names

A variable name should show the scope of the variable and its purpose. Use camel-case with no spaces between each

word. For example, the variable gblUserEmail is a global variable which holds the current user’s email address.

Good Examples Bad Examples Bad Reason

gblUserCurrent UserCurrent No scope

locPacksInBoxQuantity Loc_Packs_In_Box_Quantity Improper capitalization and spacing

LocIsLoading locBoolLoading Do not use data types in variable names

varWorkdaysDuringVacation varWorkdays Not descriptive enough

 Naming Conventions 8

Collection Names

A collection name should contain the original datasource and describe its purpose. Use camel-case with no spaces

between each word. For example, the collection colDvInvoices is a collection of invoices from Dataverse.

Good Examples Bad Examples Bad Reason

colSpEmployees colEmployees No datasource

colDvSalesLeads coldv_salesleads Improper capitalization and spacing

colNavigationMenu NavigationMenu Do no use data types in variable names

A standard list of datasource abbreviations can be found below:

Original Datasource Abbreviation

Dataverse Dv

SharePoint Sp

SQL Sql

Salesforce Sf

None (created in-app) (none)

Datasource Table Names

A datasource created by the developer should have 1-3 words to describe its purpose. Use the singluar form of the

word and proper-case. Be as concise and clear about the purpose of the datasource as possible.

Good Examples Bad Examples Bad Reason

Employee Emp Abbreviation instead of full word

Construction Projects Projects Too general, what type of projects?

Repair Orders RepairOrders No spacing, plural

 Variable Type Standards 9

Variable Type Standards

Variable Scope

A variable’s scope determines where it can be referenced in the app. If the variable is required on multiple screens use a

global variable. Otherwise, use a local or context variable instead. Choose the proper variable type by determining its

scope.

Variable Type Declaration Method Variable Scope

Global Set Function Variable is available across all app screens

Local UpdateContext Function Variable is only available on a single app screen

One-time With Function Variable is only available within the with function

Why Use Both Local Variables And Global Variables

Imagine a large canvas app with many screens that only uses global variables. When updating a variable’s value the

developer must be aware of its impact across all screens. If the developer does not correctly determine how to use a

variable there are unintended consequences (i.e. a software bug).

Local variables can only be used on one screen. Developers have an easier time assessing the impact to a single screen

as opposed to many screens. Higher quality code can be written at a faster pace.

One-time variables are not persistently stored in memory. After the With function is executed the variable is cleared

from memory and cannot be accessed outside of the function.

https://learn.microsoft.com/en-us/power-apps/maker/canvas-apps/working-with-variables
https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-set
https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-updatecontext
https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-with

 Variable Type Standards 10

Usage Examples

 // Global varable

 Set(

 gblSalesTaxAmount,

 Value(txt_OrderForm_SubtotalAmount.Text) * 0.13

);

 // Local variables

 UpdateContext(

 {

 locLineItemsCount: 0,

 locShowConfirmationMenu: false,

 locOrderFormMode=Blank()

 }

);

 // One-time variable

 With(

 {varBusinessContact: LookUp('Sales Orders', ID=ThisItem.ID)},

 Concatenate(

 varBusinessContact.FirstName,

 " ",

 varBusinessContact.LastName

);

 Commenting Code 11

Commenting Code

Why Write Code Comments?

Write comments to describe the intended goal of a section of Power Apps code. Knowing the intended goal helps

identify mismatches between it and the actual code outcome. Code that has comments takes significantly less time for

other developers to understand.

Whether or not to write comments is an ongoing debate in the software development community. Do write comments

into Power Apps code. Do not use comments as an excuse to write code with poor readability.

Tips For Writing Good Comments

Use these suggestions to write high-quality comments:

• Do write comments that describe the intent of a code section. Intent means the goal.

• Do not write comments that simply restate what a line of code does. Writing clean code means other

developers should be able to understand its function.

• Do keep comments updated when the goal of a code section changes.

• Do not write so many comments they are impossible to maintain. Comments create their own technical debt.

• Do write comments in full sentences and use plain language

• Do not use abbreviations, acronyms or slang

https://dev.to/codemouse92/to-comment-or-not-to-comment-3f7h
https://betterprogramming.pub/to-comment-code-or-not-to-comment-code-that-is-the-question-e6a4801fea7e
https://www.pluralsight.com/blog/software-development/10-steps-to-clean-code
https://en.wikipedia.org/wiki/Technical_debt

 Commenting Code 12

Line Comments vs. Block Comments

Power Apps has two comment styles: line comments and block comments. Line comments are made on a single-line

and block comments can be made across multiple lines.

Comment Style Syntax Example

Line // [comment goes here] // Validate the work order to ensure it will not be rejected upon

submission.

Block /*

[comments go here]

*/

/*

Work Order Details Screen:

- Uses a single form to create, edit and view a record to minimize

the number of controls in the app

- Emails a signed PDF to the employee’s manager after the form is

submitted so it can be stored as backup

*/

Commenting Style

Use these commenting conventions to ensure a consistent style:

• Place comments on a separate line above the code section they are describing.

• Do not write in-line comments beside on the same line as a piece of code.

• Start comments with a capital letter

• End comment text with a period

 App Settings 13

App Settings

General Tab

Choose an icon before sharing an app with users. Make it consistent with company branding. Custom images must be

245px x 245px and .jpg or .png format.

Turn on the Debug Published App setting to enable better telemetry in Power Apps Monitor while the app is in

development. Turn-off this setting when an app is pushed to production. It has a negative impact on will app

performance but it is necessary for debugging during development.

 App Settings 14

Display Tab

PC & laptop users expect Power Apps to be responsive. Use responsive design unless the app is a proof-of-concept or

there is not enough time in the budget.

Choose portrait orientation for mobile devices since they are held vertically in one-hand. Tablet apps can be either

landscape or portrait depending on its use case. Will the user be walking around performing inspections while using the

app? Then use portrait mode. Will the user be seated at a table while using the app? Then use landscape mode. Can’t

decide which orientation to use? Design a responsive app that can change its orientation.

This table shows the recommended default display settings for each type. Start with these defaults and change them if

you have a good reason.

Device Orientation Scale To Fit Lock Aspect Ratio Lock-Orientation

PC/Laptop Landscape No No No

Tablet Landscape/Portrait Yes Yes Yes

Mobile Portrait Yes Yes Yes

Tablet & Mobile Portrait No No No

All Landscape No No No

Upcoming Features Tab

Preview-features will be turned on for all Power Apps soon. It is recommended to turn all preview options on unless a

feature is known to have a bug.

Experimental features might break, change or disappear at any-time. These features frequently have bugs or are

incomplete. Do not use experimental features in productions apps unless they have been throughly tested. Never use

Retired features.

Do enable the known-good experimental feature Enhanced Component Properties.

Do not enable the preview features Keep Recently Visited Screens In Memory or Expanded Media Support or SaveData

on Power Apps Mobile Apps

https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.toptal.com/designers/mobile-ui/fundamental-guide-mobile-usability
https://ux.stackexchange.com/questions/23988/are-there-any-statistics-on-what-orientation-people-prefer-to-hold-tablets-at

 App Settings 15

Support Tab

Power Apps authoring version determines which features and functionality are available in Power Apps Studio. While

working on an app it is recommended to not change the authoring version because it can potentially introduce bugs for

existing feature. If the authoring version is updated during development the app must be retested to ensure it operates

as expected.

 Reviewing Canvas Apps 16

Reviewing Canvas Apps

App Checker

App checker identifies potential issues within a canvas app. A red dot will appear when there are formula errors or

runtime errors to notify the developer a fix is needed. The red dot will not appear for rules, accessibility and

performance errors.

Fix all issues identified in the app checker before publishing an app to production. This includes accessibility errors and

performance errors. Sometimes it is not possible to clear all errors due to an error with the app checker itself. Have a

strong justification for any errors that were not fixed.

 Reviewing Canvas Apps 17

Power Apps Code Review Tool

The Power Apps Code Review Tool is an automated code review tool built by Microsoft. A canvas app loaded into the

review tool is analyzed against a checklist and is given a pass or fail score for each item. Failed items will tell the

developer what code must be fixed.

Aim for a score of 90% with the code review tool. It is not necessary to achieve 100% because there are occasionally

good reasons to avoid best practices. For example, the review tool may recommend using the concurrent function to

execute parallel data requests. This technique can be problematic if the app is using too much memory on a mobile

device and causes Power Apps to crash.

https://powerapps.microsoft.com/en-us/blog/power-apps-code-review-tool/

 Reviewing Canvas Apps 18

Source Code Review

The Power Apps source code tool is useful for manual code reviews. It unpacks an msapp file an allows the developer to

review all code for a specific screen in a single file YAML file. This is useful because the developer does not have to click

into each individual property of a canvas control to read the code. They can simply scan the YAML from top to bottom.

Use Visual Studio Code to read the unpacked canvas app code. The C# syntax highlighter is preferred over the YAML

highlighter because Power Apps code is more similar to C#.

https://www.matthewdevaney.com/power-apps-source-code-tool/

 Reviewing Canvas Apps 19

Functional Testing

Functional testing of an app should be performed by someone other than the original developer. Ask another developer

on the team to Having a dedicated QA tester on the project team is recommended. Or, if no dedicated QA Tester is

available ask another developer to engage in peer-testing. Another person is more likely to uncover issues with an app's

behaviour.

User Acceptance Testing

All apps must undergo user acceptance testing before being launched into production. Select a small, representative

group of end users and ask them to test an app against a test script.

https://www.microfocus.com/en-us/what-is/functional-testing
https://en.wikipedia.org/wiki/Software_peer_review
https://www.techtarget.com/searchsoftwarequality/definition/user-acceptance-testing-UAT

 App Theming Guidelines 20

App Theming Guidelines

Creating An App Theme

Define an app’s theme in order to achieve a consistent style throughout all screens. Create a set of theming variables in

the app’s OnStart property and manually apply them to each control type.

Variable Name Purpose

gblAppColors Color palette for the app

gblAppFonts Heading fonts, body fonts and sizes used in the app

gblAppIcons SVG icons used in the app

gblAppDefaults Default values for common control properties

Keep a copy of each styled control on a hidden screen. It is more efficient to re-use controls instead of setting up a new

control with a style every time.

https://www.matthewdevaney.com/create-a-power-apps-custom-theme-colors-fonts-icons-controls/
https://learn.microsoft.com/en-us/power-platform/power-fx/reference/object-app#description

 App Theming Guidelines 21

Theming Variables Sample Code

Use this code in the OnStart property of an app to define its theme.

 // COLOR PALETTE

 Set(

 gblAppColors,

 {

 // Primary Colors

 Primary1: ColorValue("#30475E"), // Navy Blue

 Primary2: ColorValue("#F05454"), // Light Red

 Primary3: ColorValue("#222831"), // Dark Blue

 Primary4: ColorValue("#DDDDDD"), // Light Gray

 // Accent Colors

 Black: ColorValue("#000000"),

 Cyan: ColorValue("#17A2B8"),

 Green: ColorValue("#28A745"),

 Orange: ColorValue("#FD7E14"),

 Red: ColorValue("#DC3545"),

 Teal: ColorValue("#20C997"),

 White: ColorValue("#FFFFFF"),

 Yellow: ColorValue("#FFC107"),

 // Neutral Colors

 GrayDark: ColorValue("#484644"),

 GrayMediumDark: ColorValue("#8A8886"),

 GrayMedium: ColorValue("#B3b0AD"),

 GrayMediumLight: ColorValue("#D2D0CE"),

 GrayLight: ColorValue("#F3F2F1")

 }

);

 App Theming Guidelines 22

 // FONTS & SIZES

 Set(

 gblAppFonts,

 {

 Heading: "Roboto, Open Sans",

 Body: "Lato",

 Size: {

 Tiny: 10,

 Regular: 13,

 Subtitle: 16,

 Title: 20,

 Huge: 28

 }

 }

)

 // ICONS

 Set(

 gblAppIcons,

 {

 // SVG icon code is stored in an ‘Import from Excel’ table named AppIcons

 Checklist: LookUp(AppIcons, Name="Checklist", DataURI),

 Checkmark: LookUp(AppIcons, Name="Checkmark", DataURI)

 }

)

Branding Template

 App Theming Guidelines 23

Store any SVG code for custom app icons in a spreadsheet. Then Use the Import From Excel feature to add the

spreadsheet to the app

Branding Templates

Another option is to use a pre-built-theming template. The Power Apps Branding Template by Sancho Harker is the best

solution available for these reasons:

• Quick to setup – choose 3 colors and the theme will automatically create a theme based on

• Fully-customizable – override any control property with a custom value if the default style is not desired

• Applies to new controls – any new control inserted into the app will use the theme colors and properties

• No premium license required – theming information is stored in the msapp itself whereas the Center Of

Excellence Theme Editor uses Dataverse

https://www.matthewdevaney.com/2000-free-power-apps-icons/
https://www.youtube.com/watch?v=TiFVQ8UrjDM
https://powerusers.microsoft.com/t5/Community-App-Samples/Branding-Template-App-V3/td-p/363582
https://thepoweraddict.com/msapp-files-learn-how-to-import-them/
https://docs.microsoft.com/en-us/power-platform/guidance/coe/theming-components

 Form Design Guidelines 24

Form Design Guidelines

Restrict Text Input Values

When a text input control should only contain a number, change the default Format property to number. It prevents

users from typing any character than number. Also, update the MaxLength property to match the field’s maximum

character limit.

 // Format property of a text input named Year Project Started

 Format.Number

 // MaxLength property of a text input for Project Name

 DataSourceInfo(Projects, DataSourceInfo.MaxLength, "Project Name")

Validate Form Data

Perform data validation to ensure a form is properly filled-in before submission. Check the following items:

• Required fields are not blank

• Proper formatting for phone numbers, email addresses, postal codes, URLs, dates, etc.

• Number fields are within the allowed minimum and maximum range

• Confirmation fields are matching (passwords, etc.)

Give the user feedback when the form does not pass validation. There are 2 feedback strategies to choose from:

1. Validate On Submission – check if the form passed validation when the user presses the submit button

2. Real-Time Validation – check if a field passed validation as the user types. Once a field meets all data validation

criteria immediately indicate it passed.

https://docs.microsoft.com/en-us/power-apps/maker/canvas-apps/controls/control-text-input
https://www.matthewdevaney.com/data-validation-for-power-apps-forms/
https://www.arengu.com/blog/ux-form-validation-before-or-after-submission

 Form Design Guidelines 25

Good feedback tells the user which fields failed and how to fix them. Use one or more of these strategies to deliver

feedback:

• List the fields that failed validation and why at the top of the form

• Highlight any fields that failed validation in red

• Display an error message beside any fields that failed

Do not disable a form’s submit button until validation passes. If you use this pattern visually indicate why the submit

button is disabled on the screen at all times.

Implement Error Handling

Never assume a form submitted successfully. Always check to make sure.

Error-handling for Power Apps form control and patch forms are performed differently. If using a Power Apps form

control, catch errors using the OnSuccess and OnFailure properties. For a patch form, wrap the Patch function in an

IfError function to detect an error.

https://www.smashingmagazine.com/2021/08/frustrating-design-patterns-disabled-buttons/
https://www.matthewdevaney.com/10-things-you-should-know-about-power-apps-forms/#3.-Success-Or-Failure-Message-After-A-Form-Is-Submitted-(OnSuccess/OnFailure-Property)
https://www.matthewdevaney.com/power-apps-patch-function-error-handling/
https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-patch
https://www.matthewdevaney.com/power-apps-patch-function-error-handling/

 Form Design Guidelines 26

When an error occurs, notify the user that form could not be submitted and why it was not successful. Do not move on

to another screen until corrective action is taken.

Protect Against Loss of Unsaved Data

Prevent users from accidentally exiting a form and losing unsaved data. Before a user leaves the screen prompt them

for confirmation. Display this message on a pop-up menu: “you have unsaved data. Do you really want to close the

form?” and present the choices OK or Cancel.

https://www.matthewdevaney.com/10-things-you-should-know-about-power-apps-forms/#5.-Check-If-A-Form-Is-Unsaved-(Unsaved-Property)

 Form Design Guidelines 27

Use A Single Form To Both Edit & Display Records

Re-use the same form to create new records, edit existing records and display records in view only mode. Having only

one form reduces development & maintenance time and ensures consistency. Change the mode of a Power Apps form

using the NewForm, EditForm and View form functions. Patch forms require additional code to change the DisplayMode

of each individual control manually.

https://www.matthewdevaney.com/power-apps-form-modes-newform-editform-and-viewform/

 Gallery Design Guidelines 28

Gallery Design Guidelines

Design Empty States

Include an empty state that appears when a gallery has no data. An empty state should tell the user why the gallery is

empty and/or give directions on what actions to take next.

Reset The Gallery Scroll Position

A gallery should show its first item at the top when a screen is opened. If gallery was previously scrolled and was not

reset it will remain in the same position when the screen is opened. To reset the gallery to the top position use this

code in the OnHidden property of the gallery’s screen.

 // OnHidden property of a screen

 Reset(GalleryName);

https://www.toptal.com/designers/ux/empty-state-ux-design

 Gallery Design Guidelines 29

Refresh To Show Current Data

Users expect a gallery to include all recent updates to a datasource. Many times this happens automatically with no

extra effort required by the developer. But sometimes a manual refresh of the datasource is needed.

Gallery data will refresh automatically:

• When using a local datasource (i.e. collections)

• During the initial load of a cloud datasource

• After using the app to perform CRUD operations on cloud datasource that the gallery is connected to

Gallery data does not automatically refresh when connected to a cloud datasource (SharePoint List, Dataverse, etc.) but

no CRUD operations were performed before entering the screen. In this scenario update, the gallery before the screen

is loaded using the Refresh function.

Consider giving users the ability to manually refresh a cloud datasource by pressing a refresh button/icon.

https://www.youtube.com/watch?v=gmYlJIjHS2M
https://www.youtube.com/watch?v=gmYlJIjHS2M
https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-refresh
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete#:~:text=In%20computer%20programming%2C%20create%2C%20read%2C%20update%2C%20and%20delete,and%20changing%20information%20using%20computer-based%20forms%20and%20reports.
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete#:~:text=In%20computer%20programming%2C%20create%2C%20read%2C%20update%2C%20and%20delete,and%20changing%20information%20using%20computer-based%20forms%20and%20reports.

 Gallery Design Guidelines 30

Filter Large Datasets

Allow users to filter large datasets and get the results they want. Users should be able to filter on multiple fields at once.

Users should be able to filter on multiple fields at once. Use this coding pattern in the items property of a gallery to

support multiple dropdown filters. The code can also be adapted for other control types (combobox, datepicker, etc).

 // ITEMS property of a gallery with three dropdowns filters

 Filter(

 'Paid Time Off',

 drp_Type.Selected.Value=Blank() Or TimeOffType=drp_Type.Selected.Value,

 drp_Status.Selected.Value=Blank() Or Status=drp_Status.Selected.Value,

 drp_Employee.Selected.Value=Blank() Or Employee=drp_Employee.Selected.Value

)

https://www.matthewdevaney.com/power-apps-filter-gallery-with-multiple-dropdowns/

 Gallery Design Guidelines 31

Define The Sort Order

Data displayed in a gallery must be sorted. Galleries should be sorted by the gallery item’s title (ascending) or a date

(descending) displayed in the gallery. If not sorting by another column clearly indicate the sort order on the screen.

Giving a user the ability to select the sort column and order is recommended but not required.

Do Not Show Live Updates For Search Results

Do not update the gallery with new search results as the user types into a text box. This causes poor performance. Each

keypress triggers a new query to the cloud datasource and renders the output on the screen. The consequence of

multiple queries being executed at once will be slowness in the app.

 // Items property of a searchable gallery connected to a text input

 Search(Locations, txt_SearchLocation.Text, "Address", "City", "Province")

https://www.matthewdevaney.com/power-apps-gallery-sort-controls/

 Gallery Design Guidelines 32

Instead, require the user to type their search terms into a text input and press a button to search once finished. Set a

variable in the button’s OnSelect property and use it as the search string.

 // OnSelect property of a search button

 Set(gblSearchLocation, txt_SearchLocation.Text)

 // Items property of a searchable gallery using a global varible

 Search(Locations, gblSearchLocation, "Address", "City", "Province")

Avoid Nested Galleries

Nested galleries are a common source of poor app performance. They are slow to load and consume a lot of memory.

In some cases they have been known to cause crashes in apps with large memory usage. Use collections to create a

grouped gallery instead of nesting.

https://youtu.be/f-D99120E8Y?t=304
https://www.matthewdevaney.com/group-the-items-in-a-power-apps-gallery/

 Gallery Design Guidelines 33

Use Flexible Height Galleries

Always use a flexible height gallery instead of a blank vertical gallery. Flexible galleries have all of the same properties as

a normal gallery plus they will expand to fit a row’s contents. If an app’s design changes to require flexibility during the

development process it will be necessary to start over and completely redo the gallery.

https://learn.microsoft.com/en-us/power-apps/maker/canvas-apps/gallery-dynamic-sizing

 Error-Handling 34

Error-Handling

Enable Formula-Level Error Management

Open Power Apps advanced settings and turn on formula-level error management. It enables the IfError function, the

IsError function and the app’s OnError property to be used.

https://learn.microsoft.com/en-us/power-platform/power-fx/reference/function-iferror
https://learn.microsoft.com/en-us/power-platform/power-fx/reference/function-iferror
https://www.matthewdevaney.com/power-apps-onerror-property-capture-log-unexpected-errors/

 Error-Handling 35

Patch Function Error-Handling

Check for errors anytime data is written to a datasource with the Patch function or Collect function. Even if the

submitted record(s) are validated, good connectivity and the correct user permissions cannot be assumed. This is not

necessary for local collections stored in memory.

 // create a new invoice

 If(

 IsError(

 Patch(

 'Invoices',

 Defaults('Invoices'),

 {

 CustomerNumber: "C0001023",

 InvoiceDate: Date(2022, 6, 13)

 PaymentTerms: "Cash On Delivery",

 TotalAmount: 13423.75

 }

)

),

 // on failure

 Notify("Error: the invoice could not be created", NotificationType.Error),

 // on success

 Navigate('Success Screen')

)

https://learn.microsoft.com/en-us/power-platform/power-fx/reference/function-patch
https://learn.microsoft.com/en-us/power-platform/power-fx/reference/function-clear-collect-clearcollect

 Error-Handling 36

Power Apps Forms Error-Handling

Write any code should be executed after a Power Apps form is submitted in its OnSuccess and OnFailure properties. If

form submission is successful, use the OnSuccess property to control what happens next. Otherwise, use the OnFailure

property to display an error message that tells the user what went wrong.

 // OnSelect property of the form's submit button

 SubmitForm(frm_Invoice)

 // OnSuccess property of the form

 Navigate('Success Screen');

 // OnFailure property of the form

 Notify(

 "Error: the invoice could not be created",

 NotificationType.Error

)

Do not write any code after the SubmitForm function used to submit the form. If form submission fails Power Apps will

still move onto the next line of code. This can result in loss of data.

 // OnSelect property of the form's submit button

 SubmitForm(frm_Invoice)

 Navigate('Success Screen');

https://www.matthewdevaney.com/10-things-you-should-know-about-power-apps-forms/
https://www.matthewdevaney.com/10-things-you-should-know-about-power-apps-forms/#3.-Success-Or-Failure-Message-After-A-Form-Is-Submitted-(OnSuccess/OnFailure-Property)
https://learn.microsoft.com/en-us/power-platform/power-fx/reference/function-form

 Error-Handling 37

Power Automate Flow Error-Handling

When a Power Automate flow triggered from Power Apps its response must be checked for errors. Flows can fail due to

poor connectivity. They can also return a failure response or a result with the incorrect schema. If Power Apps does not

know the flow failed it will continue as normal.

 // Get customer invoices

 If(

 IsError(

 GetAllCustomerInvoices.Run("C0001023")

),

 // On failure

 Notify("Error: could not retrieve customer invoices", NotificationType.Error),

 // On success

 Navigate('Success Screen')

)

If Error Function

Use the IfError function to handle calculations that require a different value when an error occurs. In this example, if

gblTasksTotal equals 0 the IfError function will return 0 instead of throwing a “divide by zero” error.

 // calculate the percentage of tasks completed

 IfError(

 gblTasksCompleted/gblTasksTotal,

 0

)

https://www.youtube.com/watch?v=1AQIKnRxWsg
https://learn.microsoft.com/en-us/power-platform/power-fx/reference/function-iferror

 Error-Handling 38

Handling Unexpected Errors

An app’s OnError property is triggered when an unexpected error occurs. An unexpected error is any error that is not

handled using the IfError or IsError function.

Use this code to quickly locate the source of unexpected errors and fix them. Do not leave this on in a production app

since the error message is helpful for a developer but is confusing to a user.

If you want to log the unexpected errors in a production app use the Trace function and Azure Application Insights to

silently log the errors.

 // unexpected error notification message

 Notify(

 Concatenate(

 "Error: "

 FirstError.Message,

 "Kind: ",

 FirstError.Kind,

 ", Observed: ",

 FirstError.Observed,

 ", Source: ",

 FirstError.Source

),

 NotificationType.Information

);

https://powerusers.microsoft.com/t5/Error-Handling/New-property-App-OnError-on-version-3-21112/td-p/1350886
https://learn.microsoft.com/en-us/power-platform/power-fx/reference/function-trace
https://learn.microsoft.com/en-us/power-apps/maker/canvas-apps/application-insights

 Optimizing App Performance 39

Optimizing App Performance

Load Multiple Datasets Concurrently

Making connector calls sequentially is slow because the current connector call must be completed before the next one

starts. The Concurrent function allows Power Apps to load data faster by simultaneously processing multiple connector

calls at once. Only use the Concurrent function to retrieve data stored in cloud. There is no advantage to using

concurrent when working with data already on the device (i.e. variables and collections).

 // Sequential code execution (slower)

 Set(

 gblUserProfile,

 Office365Users.GetUserProfileV2(User().Email)

);

 ClearCollect(

 colActiveProjects,

 Filter(

 Projects,

 ProjectStatus.Value="Active"

)

)

 // Simultaneous code execution (faster)

 Concurrent(

 // Thread #1

 Set(

 gblUserProfile,

 Office365Users.GetUserProfileV2(User().Email)

),

 // Thread #2

 ClearCollect(

 colActiveProjects,

 Filter(

 Projects,

 ProjectStatus.Value="Active"

)

)

)

https://learn.microsoft.com/en-us/power-platform/power-fx/reference/function-concurrent

 Optimizing App Performance 40

Write Formulas That Use Delegation

Always write formulas that can be delegated to the cloud datasource. Delegation is when data operations such as filter,

lookup and search are performed in the cloud (i.e. SharePoint, Dataverse) instead of on the user’s device. Data

operations can be performed faster in the cloud because there are more computing resources than a laptop or mobile

phone. Also, less data will be transmitted to the user’s device because it has already been filtered by the datasource.

Refer to the official Power Apps documentation to determine which Power Fx functions can be delegated. The

supported functions are different for SharePoint, Dataverse & SQL. A warning will appear in the app checker when a

function cannot be delegated.

Dataverse views are not subject to delegation rules. Use Dataverse views to write filter criteria that cannot be delegated

using Power Apps formulas.

 Filter(

 'Device Orders',

 'Device Orders (Views)'.'Active Device Orders'

)

https://learn.microsoft.com/en-us/power-apps/maker/canvas-apps/delegation-overview
https://learn.microsoft.com/en-us/connectors/sharepointonline/#power-apps-delegable-functions-and-operations-for-sharepoint
https://learn.microsoft.com/en-us/power-apps/maker/canvas-apps/connections/connection-common-data-service#power-apps-delegable-functions-and-operations-for-dataverse
https://learn.microsoft.com/en-us/connectors/sql/#power-apps-delegable-functions-and-operations-for-sql-server
https://powerapps.microsoft.com/en-us/blog/new-app-checker-helps-you-fix-errors-and-make-accessible-apps/
https://www.youtube.com/watch?v=eKygMP7ySR8

 Optimizing App Performance 41

Cache Data In Collections And Variables

Store frequently used data in collections and variables. Data stored in memory can be accessed very quickly. A cloud

datasrouce must receive a connector call, perform a query and send a response back to the device before data can be

displayed on-screen.

 // Store the currency exchange rates table in memory for quicker access

 ClearCollect(

 colCurrencyExchangeRates,

 'Currency Exchange Rates',

)

Limit The Size Of Collections

Limit the size of collections to the least number of rows and columns that required by the app. Mobile devices have tight

restrictions on memory usage. Collections are stored in the device’s memory. If too much memory is in use the mobile

operating system will kill the Power Apps process and the app will crash.

Use the ShowColumns function to select only specific columns and drop the rest from the collection. Enable explict

column selection to fetch only table columns used in the app when connecting to Dataverse.

 // selecting only desired columns from the accounts table

 ClearCollect(

 colAccounts

 ShowColumns(

 Accounts,

 "name",

 "city",

 "state",

 "zipcode"

)

)

https://www.matthewdevaney.com/powerapps-collections-cookbook/
https://www.matthewdevaney.com/power-apps-canvas-coding-standards/power-apps-standards-variable-types/
https://learn.microsoft.com/en-us/power-platform/power-fx/reference/function-table-shaping
http://powerappsguide.com/blog/post/how-does-the-explicit-column-selection-setting-work
http://powerappsguide.com/blog/post/how-does-the-explicit-column-selection-setting-work

 Optimizing App Performance 42

“Batch Patch” Multiple Changes To A Datasource Table At Once

Quickly update multiple records in the same datasource table by using the “batch patch” technique. “Batch patch”

enables record updates to be made simultaneously. The traditional ForAll + Patch method is slower because it makes

the updates sequentially.

 // collection of records to update

 ClearCollect(

 colUpdateEmployees,

 Table(

 {ID: 2, FullName: "Alice Henderson", Active: true},

 {ID: 4, FullName: "David Wright", Active: false},

 {ID: 5, FullName: "Mary Allen", Active: false}

)

);

 // update records one-by-one (slower)

 ForAll(

 colUpdateEmployees,

 Patch(

 Employees,

 LookUp(Employees, ID=colUpdateEmployees[@ID]),

 {

 FullName: colUpdateEmployees[@FullName],

 Active: colUpdateEmployees[@Active]

 }

)

);

 // bulk update multiple records at once (faster)

 Patch(

 Employees,

 ShowColumns(

 colUpdateEmployees,

 "ID",

 "FullName",

 "Active"

)

);

 Optimizing App Performance 43

Reduce Code In The OnStart Property

The more code that is in the app’s OnStart property, the longer an app will take to start. Improve app startup time by

initializing global variables in the OnVisible property of the app’s first screen. If possible, further defer setting variables

until the screen they are needed.

Time to first screen metrics can be found in the app’s Analytics page. Go to the maker portal, click on the three dots

beside the app, select Analytics (preview), then choose Performance.

Minimize Number Of Controls On A Single Screen

Every control added to a screen increases memory usage when the screen loads. Try to achieve a screen design with the

fewest controls possible. A screen with fewer controls on it is faster to render and consumes less memory. For screens

with too many controls, consider dividing their functionality across multiple screens.

Use a gallery to display repetitive controls. Each control in a gallery only counts as 1 control no matter how many times

it is shown.

https://learn.microsoft.com/en-us/power-platform/power-fx/reference/object-app
https://learn.microsoft.com/en-us/power-apps/maker/canvas-apps/controls/control-screen

 Optimizing App Performance 44

Enable DelayOutput For Text Input Controls

The Text property of a text input is updated after each keystroke. Set the DelayOutput property of the input to true to

wait until after the user stops typing. This is useful when building a search bar connected to a gallery. With

DelayOutput enabled the app will only make one request to the datasource when typing stops, as opposed to each

keystroke.

Do Not Reference Controls On Other Screens

When writing formulas, only reference controls on the current screen. Do not reference controls on other screens. It will

force Power Apps to keep that other screen in memory even though it is not being displayed on the device. Use a global

variable to store the values found on other screens and refer to the variable instead.

https://powerusers.microsoft.com/t5/Building-Power-Apps/DelayOutput-property-of-TextInput-control/td-p/23363

 Optimizing App Performance 45

Eliminate The N+1 Problem

The N+1 problem is caused when an app must make N+1 connector calls, where N is the number of items. For example,

let’s say we want to display a list of business Contacts in a gallery. The Items property requires 1 connector call to get

Contacts from the datasource.

 // ITEMS property of a gallery

 Contacts

Each Contact has a related Account (i.e. an organization). To display the Account Name we insert a label into the gallery

with this code in the text property. As a result one additional connector call must be made for each row in the gallery.

If there are 100 rows in the gallery, there will be 101 total connector calls total (1 gallery +100 rows).

 // TEXT property of the account name label

 LookUp(Accounts, ID=ThisItem.AccountID, 'Account Name')

The solution to the N+1 problem for Dataverse is quite simple. Dataverse automatically fetches the required data in

related tables during the connector call for Contacts.

 // TEXT property of the account name label

 ThisItem.Account.'Account Name'

SharePoint lists are not a relational database and cannot return all related data in one connector call. We cannot

eliminate N+1 but we can reduce the number of connector calls to SharePoint. Collect all data in the Accounts and

Contacts prior to opening the gallery screen. Then add a new column called “Account Name” to the Contacts table by

joining it with the Accounts table. Display the resulting collection in the items property of the gallery.

 Optimizing App Performance 46

 // Download all contacts and accounts prior to entering the gallery screen

 ClearCollect(colAccounts, Accounts);

 ClearCollect(colContacts, Contacts);

 // Join tables to get account name

 ClearCollect(

 colGalleryData,

 AddColumns(

 colContacts,

 "AccountName",

 LookUp(Accounts, ID=ThisItem.AccountID, 'Account Name')

)

);

 // new ITEMS property of the gallery

 colGalleryData

 Improving Code Readability 47

Improving Code Readability

Apply Automatic Formatting

Use the formula bar’s format text command to achieve a consistent coding style throughout a canvas app. Format text

automatically applies indentation, spacing and line-breaks to Power Apps code. Well-formatted code has two benefits.

It is easier to read and quicker to spot mistakes. A consistent coding style makes it easier for developers to work

together on an app.

Use The WITH Function To Improve Readability

Power Apps With function makes long formulas more readable. For example, this formula calculates the monthly

mortage payment for a house:

 Value(txt_InterestRate.Text)/100 * Value(txt_LoanAmount.Text) /

 (1 - (1 + Value(txt_InterestRate.Text)/100)^-Value(txt_NumberOfPayments.Text))

The mortgage calculation formula cannot be interpreted at-a-glance. It takes effort to parse. Compare it to the formula

below using the With function. The formula is now human-readable because any complexity moved into one-time

variables.

https://powerapps.microsoft.com/en-us/blog/automatically-format-your-formula/
https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-with

 Improving Code Readability 48

 With(

 {

 InterestRate: Value(txt_InterestRate.Text)/100,

 LoanAmount: Value(txt_LoanAmount.Text),

 NumberOfPayments: Value(txt_NumberOfPayments.Text)

 },

 InterestRate * LoanAmount / (1 - (1 + InterestRate)^-NumberOfPayments)

);

Choose Consistent Logical Operators

The logical operator And can be written 3 different ways: And, And(), &&. There are often many ways to do the same

thing in Power Apps code. It’s OK to choose any one of these options but be consistent.

 ClearCollect(

 colCustomers,

 {State: "NY", Status: "Active"}

);

 // And operator

 Filter(

 colCustomers,

 State = "NY"

 And Status="Active"

);

 // And() function

 Filter(

 colCustomers,

 And(

 State = "NY",

 Status="Active"

)

);

 // && operator

 Filter(

 colCustomers,

 State = "NY"

 && Status="Active"

)

https://docs.microsoft.com/en-us/power-platform/power-fx/reference/operators

 Improving Code Readability 49

Join Text Strings & Variables

Combining text can be done multiple ways in Power Apps: the & operator, the Concatenate function or $-String

notation. Choose one way of doing it and be consistent.

 // set variables

 Set(gblUserName, User().FullName);

 Set(gblStreetAddress, "123 Chestnut Street");

 // join text using the & operator

 "Hi, my name is"&gblUserName&" and I live at "&gblStreetAddress&".";

 // join text using the Concatenate function

 Concatenate("Hi, my name is", gblUserName,"and I live at ",gblStreetAddress)&".";

 // join text using $-Strings

 $"Hi, my name is {gblUserName} and I live at {gblStreetAddress}"

Remove IF Statements When The Result Is A True Or False Value

An IF statement that results in true or false is not necessary to write. Get rid of the IF statement and only write the

logical comparison

 // With IF Statement evaluates to true or false

 If(gblUserRole="Manager" And gblIsDataLoaded=true, true, false)

 // Without IF Statment evalulates to true or false

 gblUserRole="Manager" And gblIsDataLoaded

https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-concatenate
https://www.matthewdevaney.com/strings-a-better-way-to-concatenate-text-strings-in-power-apps/
https://www.matthewdevaney.com/strings-a-better-way-to-concatenate-text-strings-in-power-apps/

 Improving Code Readability 50

Substitute The Self Operator For The Current Control Name

The Self operator is a concise way to access properties of the current control. Use Self instead of the full control name to

make code quicker to understand.

 // Reference using the current control name

 ColorFade(txt_SubmitForm.Fill, -10%)

 // Reference using the Self operator

 ColorFade(Self.Fill, -10%)

Flatten Nested IFs

Nested IFs are when multiple IF functions are placed inside one other. The more levels a nested IF contains the harder it

becomes to understand. Use a flat structure whenever possible to improve code readability.

 Set(gblBankAccountBalance, 5000);

 Set(gblDailyWithdrawlLimit, 1000);

 Set(gblWithdrawlAmount, 100);

 // Nested IFs

 If(

 gblWithdrawlAmount > gblBankAccountBalance,

 Notify("Insufficent funds", NotificationType.Error),

 If(

 gblWithdrawlAmount > gblDailyWithdrawlLimit,

 Notify("Daily withdrawl limit exceeded", NotificationType.Error),

 Notify("You have Withdrawn $"&gblWithdrawlAmount, NotificationType.Success)

)

);

 // Flattened IFs

 If(

 gblWithdrawlAmount > gblBankAccountBalance,

 Notify("Insufficent funds", NotificationType.Error),

 gblWithdrawlAmount > gblDailyWithdrawlLimit,

 Notify("Daily withdrawl limit exceeded", NotificationType.Error),

 Notify("You have withdrawn $"&gblWithdrawlAmount, NotificationType.Success)

);

https://docs.microsoft.com/en-us/power-platform/power-fx/reference/operators
https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-if

 Improving Code Readability 51

Alphabetical Order In Patch & UpdateContext Functions

When Patch functions have a large number of fields it takes more time to find and update them. Use alphabetical order

so the desired field can be quickly located. This technique can also be applied to the UpdateContext function.

 // create a new record

 Patch(

 colContacts,

 Defaults(colContacts),

 {

 Active: true,

 Address: "67 Walnut Grove",

 Name: "Jane Smith",

 PostalCode: "R2G 3V3",

 Province: "Ontario"

 }

);

 // update local variables

 UpdateContext(

 {

 locAccountID: GUID(),

 locBlockerUserInput: true,

 locIsMenuVisible: false,

 locReadOnlyMode: false,

 locSelectedProperty: "Location"

 }

);

https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-patch
https://docs.microsoft.com/en-us/power-platform/power-fx/reference/function-updatecontext

 Improving Code Readability 52

Simplify Logical Comparisons When Evaluating A Boolean

A boolean value itself can be used as an argument to the IF function. It is not necessary to write a logical comparison.

 Set(gblIsBankAccountActive, true);

 // logical comparison

 If(

 gblIsBankAccountActive=true,

 Navigate('Withdraw Funds Screen'),

 Notify("Bank account is not active", NotificationType.Error)

);

 // boolean value only

 If(

 gblIsBankAccountActive,

 Navigate('Withdraw Funds Screen'),

 Notify("Bank account is not active", NotificationType.Error)

)

