

2024

2024 Power Automate
Coding Standards

MATTHEW DEVANEY
LAST UPDATED: 2024-06-03

https://www.matthewdevaney.com
https://twitter.com/mattbdevaney
https://www.linkedin.com/in/matthew-devaney-6499271b7/

 Table Of Contents 2

Table Of Contents

Introduction .. 4

Naming Conventions ... 5

Why Use Power Automate Naming Conventions? .. 5

Action Names ... 6

Trigger Names .. 6

Variable Names .. 7

Connection Reference Names .. 7

Variables ... 9

How Should I Store Values In A Flow? ... 9

Variables ... 9

Compose Action ... 10

Environment Variables ... 10

Configuration Data Table ... 12

Get A Single Key-Value Pair From Configuration Data ... 13

Retrieve All Key-Value Pairs For A Configuration Data Group ... 15

Commenting Code ... 18

Why Write Code Comments? ... 18

Tips For Writing Good Comments .. 18

Display Power Automate Expressions In The Flow Comments .. 20

Do Not Use The Collaborative Comments Feature For Coding Comments ... 21

Connection References .. 22

Use Connection References Instead Of Connections .. 22

Remove Duplicate Connection References From Solutions .. 23

Assign Connection Ownership To Service Accounts .. 24

Error-Handling ... 25

Try, Catch, Finally Pattern .. 25

Group Multiple Actions Inside Of A Scope Action ... 27

Terminate The Flow With A Status Of Success Or Failure ... 29

Notify The Process Owner Of The Flow Failure ... 29

 Table Of Contents 3

Get The Flow Error Message For The Failed Action ... 30

Include The Flow Run History URL ... 33

Performance Optimization ... 35

Enable Concurrency Control In Apply To Each Loops .. 35

Execute Flow Actions In Parallel Branches ... 36

Use Filter Queries When Retrieving Large Datasets .. 37

Reduce Table Sizes By Selecting Columns .. 38

Stay Below The Data Connector API Limits .. 40

Identify Bottlenecks With Process Advisor .. 41

Favor Compose Over Declaring Variables When Creating Arrays ... 42

Exploit Batch Update APIs .. 43

Avoid Using On-Premise Actions .. 44

Flow Architecture & Design Tips .. 45

Writing Reusable Code ... 45

Security Architecture ... 48

Platform Considerations .. 50

Designing Flow Triggers ... 53

General Coding Patterns .. 56

 Introduction 4

Introduction

Welcome to the Power Automate Coding Standards for cloud flows.

In this guide you will find 60+ pages of coding rules, guidelines and best practices I use everyday to create Power

Automate cloud flows. I have spent the last 3 years building Power Automate flows every day. Now I want to share the

knowledge I've gained in this set of easy-to-understand, actionable examples.

Power Automate already has an official set of cloud flow coding standards released back in 2019. So why did I make my

own? A few reasons:

• I wanted an updated set of standards and guidelines for 2024 that includes all of the latest features

• These coding standards can be continuously improved as new Power Automate features hit “general

availability” in 2024, 2025, 2026 and beyond

• Readers can leave a comments on my website describing their own best practices which I can incorporate into

future versions

I hope you enjoy my Power Automate Coding Standards For Cloud Flows.

Support The Site

I don’t have ads on my website because I
believe in delivering the best learning
experience possible. This website is paid
for out of my own pocket. If you’ve found
value in the free resources I’ve created, I’d
love to have your support.

Click on the “Buy Me A Cat Treat” button
below to support the site.

https://powerautomate.microsoft.com/en-us/blog/read-our-new-whitepaper-on-how-to-build-enterprise-ready-flows/
https://www.matthewdevaney.com/power-apps-coding-standards-for-canvas-apps/
https://buymeacoffee.com/mattbdevaney

 Naming Conventions 5

Naming Conventions

Why Use Power Automate Naming Conventions?

A consistent naming pattern makes it easier for other developers to understand what a flow does without having to

review the details of every individual action. Cleanliness of the Power Automate code speeds up work and reduces bugs.

Flow Names

A flow name should begin with a verb (action word), describe what outcome the flow will achieve and include the

trigger type. Use proper case. Be as concise as possible.

Good Examples Bad Examples Bad Reason

Send Daily Status Report (Scheduled) Send Daily Status Report No trigger type at end of

name

Get Currency Rates From Web

(Automated)

Currency Rates From Web No verb at beginning of

name

Change App Ownership (Instant) Change app ownership (Instant) Not proper case

Prefix the flow with a group name at the start when it is part of a set of related flows. Do this to communicate the

relationship between flows. Not every flow built requires a group name. If a flow does not belong to a set then do not

add a group name.

Examples With Group Name

Generate Contract: Create & Send PDF Contract (Automated)

Generate Contract: Calculate Line Item Prices (Instant)

Generate Contract: Assemble Terms & Conditions (Instant)

https://www.collinsdictionary.com/dictionary/english/verb

 Naming Conventions 6

Action Names

A flow action name must always start with the action’s original description. It is important to include this so developers

can understand which action was selected without having to expand it. Then add more details about what the action is

doing within the context of the current flow.

Use proper case. Separate the action name and its context using a colon.

Good Examples Bad Examples Bad Reason

Get Items: Inspections Table Download Items From The Inspections

Table

Original SharePoint connector

action name missing

Compose: Email message body Compose Missing description

Send Email (V2): Daily Report To

Operations Leadership

Send Email (V2) – Daily Report To

Operations Leadership

Used a dash instead of a colon

Trigger Names

Automated flow trigger names should include the table or event name in the trigger name.

Example

When An Item Is Created: Safety Incidents

Scheduled flow trigger names must display the recurrence schedule.

Example

Recurrence: On The 1st & 15th Of The Month At 5PM

 Naming Conventions 7

Instant flows trigger names should also describe the event that triggers them.

Example

Manually Trigger A Flow: When An Admin Wants To Create A New SharePoint Team Site

Power Apps flow trigger names should describe the event the app which triggers the flow to start.

Example

Power Apps (V2): When The User Submits A New File To Upload

Variable Names

A flow variable name should begin with a prefix of “v” and describe its subject/purpose in concise manner. Use camel

case. with no spaces between each word. Be as concise as possible.

Good Examples Bad Examples Bad Reason

vQuantityInBox varQuantityInBox Do not prefix with var

vEmployeeFullName strEmployeeFullName Prefix str to denote a string data type is not necessary

vIsPastDue vispastdue Use camel case

Connection Reference Names

A connection reference name starts with a noun to describe the connection account. Then it is followed by the

connection type, the solution name and a unique identifier. These are automatically added when building inside of a

solution.

 Naming Conventions 8

Good Examples Bad Examples Bad Reason

SvcAcct-SharePoint

CurrencyExchangeRates-ac3d5

SharePoint CurrencyExchangeRates-ac3d5 Missing noun at beginning

SvcAcct-Dataverse

CurrencyExchangeRates-be005

SvcAcct-Dataverse No solution name or unique

identifier found

SystemAlerts-Office 365 Outlook

CurrencyExchangeRates-32a0c

DavidJohnson-Office 365 Outlook

CurrencyExchangeRates-32a0c

Noun is not generic.

 Variables 9

Variables

How Should I Store Values In A Flow?

Variables, the Compose action, and Environment Variables, and Configuration Data all have a useful role to play in

Power Automate flows. This section discusses where and when to use each of them.

Variables

Variables store values that can be referenced in other flow actions. Use a variable when the value will need to be

updated at multiple points during the flow run.

Avoid creating variables to store constants. A constant is a value supplied when the variable is initialized that does not

change during the flow’s execution.

Do use a variable to store the result of a calculation. Do not use variables when a direct reference can be made in the

flow action.

https://learn.microsoft.com/en-us/power-automate/create-variable-store-values

 Variables 10

Compose Action

Variables cannot be used inside of Apply To Each loops when Concurrency is enabled. Substitute the Compose action for

variables within loops to maintain the performance benefit of parallelism.

When a value is stored inside of a Compose action it cannot be updated. Only use it to store values that will not change.

The Compose action is often cited as an alternative to Power Automate variables. Don’t overuse this technique.

Compose actions can make flows less readable at a glance because they always show the word Output when referencing

a prior action.

Environment Variables

A developer following ALM best practices will create flows in a development environment, then move the flow to a

testing environment for testing and into a production environment for go-live. The flow will often need to behave

differently in each environment. Use environment variables to store configuration values and avoid hardcoding them

into the flow. Editing a flow inside a managed solution will cause an unwanted unmanaged layer to appear.

https://learn.microsoft.com/en-us/power-automate/data-operations#use-the-compose-action
https://learn.microsoft.com/en-us/power-apps/maker/data-platform/environmentvariables#use-environment-variables-in-power-automate-solution-cloud-flows

 Variables 11

For example, a flow sending an email targets an email distribution list while in production but only sends messages to

the developer while in development and test environments.

Leverage a single environment variable to replace several of the same hardcoded values across multiple flows.

 Variables 12

Configuration Data Table

An environment variable should not be created when it will only be used in a single flow. Instead, create a table

called Configuration Data and use it to hold key-value pairs containing the flow settings.

The Configuration Data table includes the following single-line text columns:

Key – describes the key-value pair, must be unique to the group.

Value – the value to be used inside the flow

Group – identifies a set of key-value pairs, making it possible to get all needed key-value pairs at once

ID Key Value Group

1 DistributionList alerts@matthewdevaney.com DailyNotificationsFlow

2 EnableSendingEmail true DailyNotificationsFlow

3 DelaySeconds 60 DailyNotificationsFlow

4 OutputFolder C:/Documents/Sales Reports GenerateReportFlow

5 DelaySeconds 15 GenerateReportFlow

Replace as many hardcoded values in a flow as possible. This will eliminate the need to redeploy a flow to make changes

to its behavior.

 Variables 13

Get A Single Key-Value Pair From Configuration Data

A single value key-value pair can be obtained using the Get Item (SharePoint) or Get Row (Dataverse) action.

 Variables 14

To use the configuration data value select it from the dynamic content menu.

 Variables 15

Retrieve All Key-Value Pairs For A Configuration Data Group

All key-value pairs for a group (e.g. DailyNotificationsFlow) can be retrieved using this flow pattern.

 Variables 16

The following expression is used in the Compose: Key-Value Pairs Object flow action.

 first(json(replace(replace(string(body('Select:_Key-Value_Pairs')), '},{',

 ','),'null,','"",')))

 Variables 17

Configuration data values for the group can be accessed in the dynamic content menu.

 Commenting Code 18

Commenting Code

Why Write Code Comments?

Write comments to describe the intended goal of a section of Power Automate code. Knowing the intended goal helps

identify mismatches between it and the actual code outcome. Code that has comments takes significantly less time for

other developers to understand.

Tips For Writing Good Comments

Use these suggestions to write high-quality comments:

• Do write comments that describe the intent of a code section. Intent means the goal.

• Do not write comments that simply restate what is already made clear in the flow action’s name

• Do keep comments updated when the goal of a code section changes.

• Do not write so many comments they are impossible to maintain. Comments create their own technical debt.

• Do write comments in full sentences and use plain language

• Do not use abbreviations, acronyms or slang

https://dev.to/codemouse92/to-comment-or-not-to-comment-3f7h
https://en.wikipedia.org/wiki/Technical_debt

 Commenting Code 19

 Commenting Code 20

Display Power Automate Expressions In The Flow Comments

Copy and paste Power Automate expressions into the comments section so they can be quickly browsed. The flow does

not show the full expression without hovering on it or taking additional steps to open the code editor. Make sure to

update the comments each time the expression is changed.

 Commenting Code 21

Do Not Use The Collaborative Comments Feature For Coding Comments

Collaborative comments are stored in a Dataverse table named Comment. They are not stored in the flow definition.

When a flow is exported to another environment, its comments do not come with it. This is why collaborative comments

should be used to conduct code reviews and not to comment your flows.

https://learn.microsoft.com/en-us/power-apps/maker/data-platform/data-platform-intro

 Connection References 22

Connection References

Use Connection References Instead Of Connections

Flow actions requiring authentication must use either a connection or a connection reference. Connections allow Power

Automate to interact with other online services (SharePoint, Outlook, etc). Connections references do the same but they

hold a reference to a shared connection instead of connecting directly themselves.

Always use Connection References to reduce maintenance efforts. Swapping out connections for a flow action must be

done individually. Connection references can changed in one place and will update all connected flows. Fixing broken

connections is much faster too.

Connection references in a managed solution can be updated without creating an unmanaged layer. Never directly edit

flows in production and test environments to avoid introducing bugs.

 Connection References 23

Remove Duplicate Connection References From Solutions

There should only be one connection reference within a solution for each online service being accessed. Remove any

duplicate connection references from the solution. The exception should be made when an online service must be

accessed with multiple sets of credentials. For example, connecting to Outlook with two different Shared Mailboxes.

De-duplicate Connection References In Environments

In addition to removing duplicate Connection references inside of a solution, they must also be de-duplicated within an

environment.

When multiple solutions are imported into an environment it is common for them to each include their own connection

references.

 Connection References 24

Assign Connection Ownership To Service Accounts

A Service Account with the System Administrator security role should own the connections being used by connection

references. This enables centralized management of connections under an account with elevated permissions.

Do not use a developer’s personal account as the connection owner. To change connection details another developer

would have to login as the original developer.

Having a Service Principal own the connections would be ideal. However, Power Platform does not support the use of

Service Principals under the Per User license. A more costly, yet higher capacity, Per Flow licensing plan is required.

 Error-Handling 25

Error-Handling

Try, Catch, Finally Pattern

Check for errors and tell Power Automate how to handle them at possible failure points in the flow. The Try, Catch,

Finally pattern for error-handling pattern is found in most programming languages:

Try – Attempt to execute one or more flow actions

Catch – When an error occurs, do these steps next

Finally – always run these actions whether the previous actions succeeded or failed

Here’s how to create the Try, Catch, Finally pattern with Power Automate.

 Error-Handling 26

Configure the “run after settings” as shown for the flow actions below.

 Error-Handling 27

Group Multiple Actions Inside Of A Scope Action

When multiple actions have the same error-handling requirements place them inside a scope action. A scope action

holds a set of other actions.

 Error-Handling 28

Then configure the run-after requirements for the scope. Now any action inside the scope will trigger the error-handling

behavior.

 Error-Handling 29

Terminate The Flow With A Status Of Success Or Failure

A flow using error-handling will continue to run after it encounters an error. It will end with a status of succeeded even

though there was a failure. To overcome this issue, include terminate actions as the final flow steps to ensure to correct

status is displayed in the flow run history.

Notify The Process Owner Of The Flow Failure

Alert the business process owner when the flow fails to let them know there was an issue. If no one is notified when the

flow fails then it will not get fixed and could continue to happen.

 Error-Handling 30

Get The Flow Error Message For The Failed Action

The reason for flows failures are not often not known in advance. This makes writing an error message before-hand

difficult. By using the actions expression we can extract a useful error message from the flow action that failed.

 Error-Handling 31

Add a failure reason section to the flow failure notification and use this expression.

 actions('Compose:_Test_Value')?['error]'?['message']

When the flow fails an error message will appear in the flow run history.

 Error-Handling 32

Then the message gets included in the flow failure notification to the business process owner who will take action on it.

 Error-Handling 33

Include The Flow Run History URL

A clickable link to the flow run details should be added to the failure notification. The message can be forwarded to a

developer who can quickly identify the failed flow run in the history. Then they can review the issue and diagnose the

problem. To do this, use this following coding pattern:

 Error-Handling 34

Flow expression #1 gets the environment’s unique identifier.

 outputs('Compose:_Get_Workflow_Details')?['tags']?['environmentName']

Flow expression #2 extracts the flow’s unique identifier.

 outputs('Compose:_Get_Workflow_Details')?['name']

Flow expression #3 finds the flow run’s unique identifier.

 outputs('Compose:_Get_Workflow_Details')?['run']?['name']

The failure notification email looks like this:

 Performance Optimization 35

Performance Optimization

Enable Concurrency Control In Apply To Each Loops

Apply To Each loops run sequentially by default. If there are 20 items to loop over, the flow will run them in order: 1, 2,

3… until it reaches item 20. Enable concurrency control in the Apply to Each action settings to run up to 50 actions at

the same time.

https://www.matthewdevaney.com/power-automate-apply-to-each-loops-20x-faster/

 Performance Optimization 36

Execute Flow Actions In Parallel Branches

Power Automate executes flow actions in sequence. But actions can also be run in parallel when they are not

dependent upon each another. For example, a flow that gets multiple lists of items in sequence may be reorganized to

get all lists of items at the same time.

https://powerautomate.microsoft.com/en-us/blog/parallel-actions/

 Performance Optimization 37

Use Filter Queries When Retrieving Large Datasets

It takes more time to retrieve a large set of records from a datasource than a small set of records. Apply filters when

fetching data to reduce the number of rows being downloaded.

If there is no option to filter the records before downloading them use the Filter Data Operation immediately

afterwards. Smaller datasets require less iterations in loops.

Example: Dataverse – List Rows action

https://learn.microsoft.com/en-us/power-automate/dataverse/list-rows#filter-rows

 Performance Optimization 38

Reduce Table Sizes By Selecting Columns

Similarly, a table with more columns is slower to download than a table with less columns. Always define which columns

should be selected to minimize the size of the dataset being downloaded.

Example: SharePoint Get Items action

https://learn.microsoft.com/en-us/sharepoint/dev/business-apps/power-automate/guidance/working-with-get-items-and-get-files#limit-columns-returned-by-view

 Performance Optimization 39

Example: Dataverse – List Rows action

https://learn.microsoft.com/en-us/power-automate/dataverse/list-rows#select-columns

 Performance Optimization 40

Stay Below The Data Connector API Limits

Every flow data connector has API limits for throughput. After a set number of API calls per minute the data connector

will become throttled to protect the service. Be aware of the API limits for each connector used in a flow. API limits can

be found in the Power Automate documentation for the data connector.

Example: Dataverse connector limits

https://learn.microsoft.com/en-us/connectors/commondataserviceforapps/#limits

 Performance Optimization 41

Identify Bottlenecks With Process Advisor

Process advisor tracks the average duration of individual flow actions as well as total duration. Inspect flows using

process advisor to see where bottlenecks are occurring. Focus attention on the slowest actions when improving the

flow.

https://learn.microsoft.com/en-us/power-automate/process-mining-cloud-flow-process-insights
https://learn.microsoft.com/en-us/power-automate/process-mining-cloud-flow-process-insights

 Performance Optimization 42

Favor Compose Over Declaring Variables When Creating Arrays

The Compose action executes twice as fast as declaring variables. For large arrays this is a huge time saver. Use

Compose instead of a variable to build arrays when the array does not have to be modified.

https://learn.microsoft.com/en-us/power-automate/data-operations#use-the-compose-action

 Performance Optimization 43

Exploit Batch Update APIs

Look for batching capabilities in APIs. Batching allows us to do a high-volume of transactions at high-speed. For instance,

SharePoint lists have batch create, update and delete abilities only accessible through the SharePoint HTTP

action. Read the API documentation for the desired service to check if this is available.

https://www.tachytelic.net/2021/06/power-automate-flow-batch-create-sharepoint-list-items/

 Performance Optimization 44

Avoid Using On-Premise Actions

Flow actions that connect to cloud resources are faster than on-premise records. For example, it would be faster to

access files stored in OneDrive than files stored on the local File System via a gateway.

https://learn.microsoft.com/en-us/connectors/onedrive/
https://learn.microsoft.com/en-us/connectors/filesystem/

 Flow Architecture & Design Tips 45

Flow Architecture & Design Tips

Writing Reusable Code

Create Child Flows To Store Repetitive Logic

A flow that is called by another flow and passes back the result is known as child flow. Child flows should be created

when there is repetitive logic used multiple times in the same flow. Or when there is repetitive logic used across

multiple flows. Write the child flow once and use it in several locations.

Child flows are also recommended to abstract complex flow logic. Moving sections of code from a lengthy flow into child

flows can make it more manageable/easy to understand.

https://learn.microsoft.com/en-us/power-automate/create-child-flows

 Flow Architecture & Design Tips 46

Favor Custom Connectors Over The HTTP Action For Reusability

When no suitable connector exists, we have the option to use an HTTP action or a custom connector to extend Power

Automate’s capabilities. Custom connectors are preferable because they can be created once and deployed to the rest

of the organization for everyone to use. For example, a custom connector to find the US Dollar exchange rate has many

use-cases.

https://www.matthewdevaney.com/make-your-first-custom-connector-for-power-automate-and-power-apps/

 Flow Architecture & Design Tips 47

Always Build Flows Inside Of A Solution

Build flows inside of a solution so they can be easily transported across environments. As new flow actions are added,

and connection references are created, those connection references will automatically be placed in the solution.

Environment variables used by the flow should also be added to the solution as well.

https://learn.microsoft.com/en-us/power-automate/overview-solution-flows

 Flow Architecture & Design Tips 48

Security Architecture

Secure Inputs/Outputs For Passwords, API Keys and Secrets

Credentials coming from Azure Key Vault, CyberArk, etc. should never be displayed in the flow run history. Change

the flow action settings to secure inputs/outputs for every step where sensitive information is showing.

https://www.matthewdevaney.com/hide-passwords-in-power-automate-flows-and-api-keys-secrets/

 Flow Architecture & Design Tips 49

Enable Elevated Permissions By Configuring Run As User

Power Automate flows are run in the context of a user account. The user account is what determines the permissions a

flow has. Flows with instant or Power Apps triggers are run in the context of the user who performed the action to start

them.

Configure the Run As Users setting to impersonate another user account during the flow run. Use this ability to grant

elevated permissions inside the flow that the user would not normally have.

https://learn.microsoft.com/en-us/sharepoint/dev/business-apps/power-automate/guidance/manage-list-flows#managing-run-only-users

 Flow Architecture & Design Tips 50

Platform Considerations

Be Aware Of Power Platform Request Limits

There is a maximum amount of Power Platform requests a user can make in a 24 hour period. Most flow triggers and

actions count as 1 request. To get a rough of estimate the number of requests a flow will make multiply the anticipated

number of flow runs by the total number of actions plus the trigger.

Purchase a Power Automate premium or a Power Automate Process license to increase the request limits if needed. Or

reduce the number of flow runs/actions to minimize the number of requests made.

https://learn.microsoft.com/en-us/power-platform/admin/power-automate-licensing/types#power-platform-requests

 Flow Architecture & Design Tips 51

Decide Whether To Use Premium Flow Connectors

Any flows containing a premium connector will require additional licensing to run. Consider moving premium

functionality into flows run by the service account as opposed to an end-user to save costs. For example, a flow using

premium actions to generate and collect a contract signature could be triggered indirectly by the end user and run by

the service account.

Always follow the licensing rules set forth by Microsoft. Do not engage in multiplexing activity.

https://learn.microsoft.com/en-us/connectors/connector-reference/connector-reference-premium-connectors

 Flow Architecture & Design Tips 52

Keep The 30 Days Flow Duration Limit In Mind

After 30 days a flow run will terminate even if it is not done running. For example, a Wait For Approval action that

receives no response from the application approver.

To restart a long running flow set a timeout value of 29d in the advanced settings. Then create a parallel branch with

actions to re-trigger the flow when only when the previous step times out. Terminate the flow as the final action in this

branch.

https://www.youtube.com/watch?v=h6Eb-F0P6Hs

 Flow Architecture & Design Tips 53

Designing Flow Triggers

Replace The Power Apps V1 Trigger With V2

Always use the Power Apps V2 trigger instead of V1. The V2 trigger allows us to define parameters inside the trigger

action and set them as required/not required. It also has a new data type called File which allows us to pass in images

and attachments from Power Apps.

The V1 trigger is not recommended. Parameters are created by using an “Ask In Power Apps” option in the dynamic

content window. This tends to make a mess since parameters cannot be deleted when they are no longer needed.

 Flow Architecture & Design Tips 54

Apply Select And Filter Criteria To Automated Triggers

Never use the When A Record Is Added, Modified or Deleted trigger for Dataverse without defining Select & Filter

criteria. Selecting columns only triggers a flow when the targeted column is modified. Filtering ensures the flow only

triggers when a specific criteria are met. A trigger without filter conditions will start after every record added, modified

or deleted and its actions will count towards daily Power Platform request limits.

https://learn.microsoft.com/en-us/power-automate/dataverse/create-update-delete-trigger
https://learn.microsoft.com/en-us/power-automate/dataverse/create-update-delete-trigger

 Flow Architecture & Design Tips 55

Create Advanced Trigger Conditions With Flow Expressions

Use Power Automate expressions to create flow trigger conditions that are not available out-of-the-box. For example,

the recurrence trigger does not have any option to trigger only on the last Friday of the month. But by opening the

recurrence trigger settings and adding trigger conditions it can be achieved.

https://tomriha.com/schedule-power-automate-flow-to-run-only-last-friday-of-the-month/

 Flow Architecture & Design Tips 56

General Coding Patterns

Flatten Nested IF Condition Actions

Multiple IF condition action nested inside of one another make it difficult to understand what will happen next in the

flow. To make matters worse, when we open a flow the condition actions are collapsed and we must expand them to

see what’s going on inside.

Make conditional logic only one layer deep wherever possible. Instead of nesting IFs try to break up logic into several

sequential IF statements.

 Flow Architecture & Design Tips 57

 Flow Architecture & Design Tips 58

Eliminate Unnecessary Apply To Each Loops

The SharePoint – Get Items action can be used to obtain a single record with a matching unique value. For example, get

the list item where email address equals matthewdevaney@outlook.com from the Employees SharePoint list. Any

subsequent action using the Employee data will be created inside of a loop. The Get Items action always returns a table

even if only one item is returned

Write a flow expression that includes the first function to eliminate the Apply To Each loop. It takes the first record from

an array and allows access to its values. Loops should not be added to a flow when there will only be one iteration.

 Flow Architecture & Design Tips 59

 Flow Architecture & Design Tips 60

Generate Fetch XML For The Dataverse List Rows Action

When using the Dataverse List Rows action filter the rows with Fetch XML queries instead of OData queries. Fetch XML

can be generated by performing an advanced filter in a model driven app and selecting the Fetch XML button. Fetch XML

has more query options than OData and does not need to be manually written by the developer.

 Flow Architecture & Design Tips 61

 Flow Architecture & Design Tips 62

Use A State Machine Pattern

Suppose there is an approvals workflow with many stages: 1st level, 2nd level, 3rd level. The flow progresses through

each stage until it successfully terminates. Now let’s add another requirement. When an approval is rejected the

workflow must be returned to the previous level. How can we accomplish this without writing a large amount of

redundant code?

We can use a State Machine pattern to detect the current state of the workflow and direct it to the next action. To do

this, we create a Switch statement inside of a Do-Until loop. At the start of each loop we determine the current state

(Level 1, Level 2, Level 3). Then we run the appropriate actions determined by the Switch.

Once all actions for the state are completed the approval is updated to a new state. The Do-Until loop repeats until it

meets the looping exit conditions.

https://sharepains.com/2018/09/28/microsoft-flow-state-machine-template/

